
1 23

Landscape Ecology
 
ISSN 0921-2973
Volume 27
Number 2
 
Landscape Ecol (2012) 27:253-266
DOI 10.1007/s10980-011-9701-4

The influence of landscape characteristics
and home-range size on the quantification
of landscape-genetics relationships

Tabitha A. Graves, Tzeidle
N. Wasserman, Milton Cezar Ribeiro,
Erin L. Landguth, Stephen F. Spear, Niko
Balkenhol, Colleen B. Higgins, et al.



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V. (outside the

USA). This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

work, please use the accepted author’s

version for posting to your own website or

your institution’s repository. You may further

deposit the accepted author’s version on

a funder’s repository at a funder’s request,

provided it is not made publicly available until

12 months after publication.



RESEARCH ARTICLE

The influence of landscape characteristics and home-range
size on the quantification of landscape-genetics relationships

Tabitha A. Graves • Tzeidle N. Wasserman • Milton Cezar Ribeiro •

Erin L. Landguth • Stephen F. Spear • Niko Balkenhol • Colleen B. Higgins •

Marie-Josée Fortin • Samuel A. Cushman • Lisette P. Waits

Received: 3 June 2011 / Accepted: 14 December 2011 / Published online: 3 January 2012

� Springer Science+Business Media B.V. (outside the USA) 2011

Abstract A common approach used to estimate

landscape resistance involves comparing correlations

of ecological and genetic distances calculated among

individuals of a species. However, the location of sam-

pled individuals may contain some degree of spatial

uncertainty due to the natural variation of animals

moving through their home range or measurement error

in plant or animal locations. In this study, we evaluate

the ways that spatial uncertainty, landscape character-

istics, and genetic stochasticity interact to influence the

strength and variability of conclusions about landscape-

genetics relationships. We used a neutral landscape

model to generate 45 landscapes composed of habitat

and non-habitat, varying in percent habitat, aggregation,

and structural connectivity (patch cohesion). We created

true and alternate locations for 500 individuals, calcu-

lated ecological distances (least-cost paths), and simu-

lated genetic distances among individuals. We

compared correlations between ecological distances

for true and alternate locations. We then simulatedElectronic supplementary material The online version of
this article (doi:10.1007/s10980-011-9701-4) contains supple-
mentary material, which is available to authorized users.
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genotypes at 15 neutral loci and investigated whether the

same influences could be detected in simple Mantel tests

and while controlling for the effects of isolation-by-

distance using the partial Mantel test. Spatial uncer-

tainty interacted with the percentage of habitat in the

landscape, but led to only small reductions in correla-

tions. Furthermore, the strongest correlations occurred

with low percent habitat, high aggregation, and low to

intermediate levels of cohesion. Overall genetic sto-

chasticity was relatively low and was influenced by

landscape characteristics.

Keywords Least cost � Habitat resistance �
Fragmentation � Genetic structure � Sampling error �
Aggregation � Cohesiveness � Connectivity �
Gene flow � Isolation-by-resistance

Introduction

The degree of landscape resistance influences the

movement of individual organisms and the genetic

exchange among spatial localities (Murphy et al. 2008;

Spear et al. 2010). Analyzing the genetic patterns that

result from this exchange allows researchers to identify

landscape features that enhance or diminish species

movement, which in turn affects gene flow (Manel

et al. 2003; Holderegger and Wagner 2008; Storfer

et al. 2010). Landscape genetic studies have demon-

strated how topographic and environmental gradients,

habitat fragmentation, and barriers such as roads,

streams and mountains create genetic structure within

and among populations (e.g., Jacquemyn et al. 2004;

Sork and Smouse 2004; McRae et al. 2005; Cushman

et al. 2006; Ficetola et al. 2007; Dixo et al. 2009;

Landguth et al. 2010; Murphy et al. 2010). Results

from such studies are increasingly used to inform

management and conservation applications, specifi-

cally with respect to corridor design (Epps et al. 2007;

Braunisch et al. 2010; Segelbacher et al. 2010).

Among the most popular approaches for landscape

genetic analyses is the statistical comparison of genetic

and ecological distances (Storfer et al. 2010). In this

approach, genetic distances are calculated among

sampling units at the individual or population level

using a diversity of metrics (Storfer et al. 2007, 2010).

Ecological distance can be estimated by a number of

approaches: Euclidean (straight-line), least-cost, least-

corridor, or circuit-theory resistance distances (McRae

2006; Pinto and Keitt 2009; Rayfield et al. 2010). By

regressing or correlating the genetic and ecological

distances statistically, researchers can infer the effect of

landscape-level features on genetic structure (Cushman

et al. 2006; Balkenhol et al. 2009).

When individuals rather than populations are the unit

of analysis, researchers typically use one location to

represent each individual (Cushman et al. 2006;

Schwartz et al. 2009; Braunisch et al. 2010; Shirk

et al. 2010; Wasserman et al. 2010; Short Bull et al.

2011). Such a location may be the only sample for an

individual, the center of multiple sample locations of an

individual, or a location randomly chosen from multiple

sample locations. Using just one geographic location to

represent individuals in space may accurately represent

the location of plants or sessile animals. Yet, when

dealing with mobile animals, the use of a single location

may introduce spatial uncertainty into landscape genetic

analyses. The sampling location of highly vagile species

may be far from central mating or reproduction areas,

and therefore may not reflect environmental factors

impacting gene flow. The influence of this potential

spatial uncertainty on conclusions for landscape-genet-

ics relationships likely depends on home-range size and

specificity of breeding habitats. Many large mammals

have extensive home ranges and pass through multiple

habitat types, and thus may be sampled outside areas

related to successful reproduction or survival (Lovari

et al. 2008; Richard et al. 2008; Krofel et al. 2010).

Although this is an obvious concern for most animal

researchers, this problem cannot be easily addressed in

an empirical study. Since researchers rarely know how

well a specific sampling location represents the home

range of a mobile animal, this potential issue is largely

ignored in current studies of landscape genetics.

In addition to home-range size, the influence of

spatial uncertainty may depend on landscape charac-

teristics. Cushman et al. (in press) demonstrated that

habitat area and fragmentation determine the signif-

icance of correlations between genetic and landscape

distances. Landscapes with a high proportion of

suitable habitat and low fragmentation are less likely

to have detectable effects on genetic structures. Given

this relationship, assessment of the influence of spatial

uncertainty requires evaluation of the relative influ-

ence of landscape characteristics versus spatial uncer-

tainty on landscape-genetics relationships.

We further hypothesized that increasing spatial

uncertainty would increase the variability of
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correlations in landscape-genetics relationships. Spe-

cifically, changes in individual locations could lead to

changes in inter-individual ecological distances, which

could change the strength of the correlation with genetic

distances, potentially leading to different conclusions.

The variation in locations also introduces variability into

correlations between genetic and ecological distances.

Yet another influence on the strength and variability

of correlations depends on genetic stochasticity (the

random process of allele inheritance across genera-

tions). This genetic stochasticity adds variation to

genetic distances between individuals, which could

increase or decrease correlations. Finally, landscape

characteristics could also influence the amount of

genetic stochasticity. For instance, if the distance

between habitat patches is near the limit of a species’

mating or dispersal distance, gene flow may or may

not occur, thus increasing the variation in genetic

distances among individuals. Although real popula-

tions will only have one realization of this stochastic

genetic process (and thus the variation cannot be

measured empirically), by simulating multiple inde-

pendent genetic datasets for each landscape scenario

we can quantify the influence of all of these effects

(spatial uncertainty, landscape characteristics, and

genetic stochasticity) on the strength and variability of

landscape-genetic conclusions.

In this study, we simulated landscape genetic

datasets to provide a first assessment of whether

variation in sampling location within an individual’s

home-range influences results in landscape genetic

studies. We simulated individuals that move and

reproduce across 45 landscapes with varying compo-

sition and configuration of habitat. We then altered the

spatial location of individuals within five home ranges

of increasing size. We evaluated the concordance of

correlations obtained with the ‘true’ locations of

individuals versus those obtained from five ‘alternate’

sampling points within the individual’s home-range.

We investigated how spatial uncertainty in individual

locations affect (1) ecological distances between

individuals and (2) correlations between genetic and

ecological distances. In addition, we assessed the

relative contributions of spatial uncertainty, landscape

characteristics, and genetic stochasticity to the

strength and variability of correlations used for

landscape genetic inferences. We discuss the rele-

vance of these findings for landscape genetic studies

and suggest future avenues for research.

Methods

Simulating landscapes

We used a factorial study design to explore the way

that spatial uncertainty, percent habitat, and fragmen-

tation affect the strength of landscape-genetics rela-

tionships. For this, we used the neutral landscape

model QRULE (Gardner 1999) to simulate binary

landscape maps (habitat vs. non-habitat) with

512 9 512 pixels. QRULE controls fragmentation

through the H parameter, which affects the aggrega-

tion of pixels into homogeneous patches. Higher

values of H lead to higher levels of aggregation. We

created landscapes that varied systematically across

three levels of percent habitat (15, 35, and 55%) and

aggregation (H = 0.3, 0.6, and 0.90; Fig. 1). We

produced 5 replicates of this 9 combination factorial to

assess variation and improve statistical power, yield-

ing 45 total landscapes.

Simulating individuals

In each of the 45 landscapes, we randomly placed 500

individuals in habitat pixels to represent the true

location of an individual (true locations; Fig. 1). To

examine the effect of spatial uncertainty, we then

placed five buffers equal to 10, 15, 20, 25, and 30% of

the diameter of the landscape (equivalent to radii of

768, 1152, 1536, 1920, and 2304 m) around each true

individual. Buffers represent different home range

sizes which in essence correspond to different amounts

of spatial uncertainty in sample locations. We created

alternate locations for each individual by randomly

placing a (x, y) location within each buffer (alternate

locations; Fig. 2). Thus, for each of our 45 landscape

maps, we had 500 true locations and 2,500 (500 9 5)

alternate locations. Our buffers do not represent home

ranges for any specific species, but instead (1) spatial

uncertainty for any species with home ranges com-

prising 10–30% of the study area or (2) spatial error

equal to 10–30% of the study area.

Calculation of pairwise distances

between individuals

We calculated two-dimensional Euclidean (straight-

line) distances between each pair of true individual

locations for each landscape. Next we assigned a
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resistance value of 20 to non-habitat landscape cells,

compared to a resistance value of 1 for habitat cells,

and calculated pair-wise ecological landscape dis-

tances between all true individuals and alternate

individuals based on the accumulated least-cost path,

using the COSTDISTANCE function in ArcGIS

(ESRI 2008).

Simulating landscape-genetic relationships

We used CDPOP version 0.88 (Landguth and Cush-

man 2010) to simulate the processes of mating and

dispersal as functions of the spatial patterns of habitat

and non-habitat in these 45 simulated landscapes with

true locations and pairwise landscape distances among

true locations. CDPOP is an individual-based, spa-

tially explicit, landscape genetics program that simu-

lates birth, death, mating, and dispersal of individuals

in complex landscapes as probabilistic functions of

movement among the individuals (pairwise distances).

We simulated gene flow among these true locations for

300 non-overlapping generations, long enough for

genetic structure to stabilize (i.e., reach a spatial

genetic equilibrium; Landguth et al. 2010). We

generated genetic data for 15 loci, with 15 alleles that

were initially randomly assigned among individuals

(i.e., maximum allelic diversity). We used an inverse-

square mating and dispersal probability function, with

maximum dispersal distance of 50,000 m in uniformly

suitable habitat. Reproduction was sexual, females

could only mate a single time (without replacement)

and males could mate with multiple females (with

replacement). The number of offspring was based on a

Poisson probability with a mean of 5, which ensured

no immigration. For each of the 45 true landscape

maps, we ran 10 Monte Carlo replicates to assess

genetic stochastic variability. CDPOP produced matri-

ces of pairwise genetic distances between all 500

simulated individuals based on proportion of shared

alleles (Bowcock et al. 1994) at the end of our

simulation.

Selection of landscape fragmentation metrics

In addition to percent habitat and aggregation, we

wanted to examine landscape metrics that measured

fragmentation and thus could potentially better predict

the strength of landscape-genetic correlations. We

selected landscape metrics based on past work, which

assessed the strength and functional shape of the

Fig. 1 A single replicate (9

landscapes) of our factorial

design with true locations

(black dots) in habitat (gray
areas). We had 5 replicates

for 45 total landscapes
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relationship between a large number of landscape

metrics and the H level in QRULE landscapes (Neel

et al. 2004). Schumaker (1996) demonstrated that

patch cohesion (hereafter, cohesion), which incorpo-

rates patch area and perimeter, very successfully

predicted the ability of simulated owls to disperse in a

landscape. Cushman et al. (in press) further found that

cohesion strongly predicted gene flow. Their models

also included a metric, clumpy (McGarigal et al.

2002), designed to approximate the aggregation

created from the H level in QRULE. We therefore

chose clumpy and cohesion as potential covariates.

We calculated all metrics with FRAGSTATS (McGa-

rigal et al. 2002).

Data analysis

To evaluate the influence of spatial uncertainty,

landscape characteristics, and genetic stochasticity

on correlations obtained in landscape-genetics studies,

we carried out analyses for three different dependent

variables. We used Mantel (Mantel 1967) and partial

Mantel correlations (Smouse et al. 1986) as our

dependent variables because this is the most common

approach to assess landscape-genetics relationships.

We then constructed different models that explain

these three different dependent variables as a function

of potential covariates (see below).

We calculated the Mantel’s r correlation between

ecological distances obtained from the ‘true’ individ-

ual locations, and the ecological distances obtained

from the five alternate locations for each individual

(True*Alternate). This correlation measures how

closely ecological distances obtained from random-

ized locations match the ‘true’ ecological distances

used to simulate the genetic patterns, so effects are not

influenced by genetic stochasticity.

Then, we calculated Mantel’s r between genetic

distances and ecological distances obtained from

alternate locations (Genetic*Ecological). This corre-

lation quantifies the strength of landscape-genetics

relationships resulting from our simulations.

Finally, we calculated partial Mantel’s r between

genetic distances and ecological distances, after

accounting for the effects of Euclidean distances

(Genetic*Ecological | Euclidean). This correlation

measures the strength of the relationship between

ecological and genetic distance after removing the

influence of Euclidean distance on genetic distance.

Genetic*Ecological and Genetic*Ecological | Euclid-

ean are the primary approaches used to identify effects

of landscape on genetic structure. In particular, recent

simulation work demonstrated that partial Mantel tests

have high power to correctly identify the drivers of

genetic differentiation while rejecting incorrect alterna-

tive hypotheses in individual-based landscape genetics

(Cushman and Landguth 2010).

Identifying covariate influence through

generalized mixed models

To compare the relative influence of spatial uncer-

tainty, landscape characteristics, and genetic stochas-

ticity on the three Mantel correlation values described

above, we modelled each correlation as a function of

covariates. To do so, we used generalized linear mixed

models (GLMM) and followed the procedure of Zuur

et al. (2009) to identify the best model for each

dependent variable. Each analysis incorporated three

components: (1) random effects, (2) variance covar-

iates, and (3) fixed effects.

Fig. 2 Example of alternate point selection. Black dots show

true locations. Circles with numbers show 2 true locations (0)

and the alternate locations (1–5) chosen within buffers ranging

from 10 to 35% of the diameter of the landscape. Solid line is

Euclidean distance between true locations. Dashed lines show

Euclidean distances between alternate locations. Least-cost

paths between these pairs were used in analyses. Alternate

locations could be anywhere within the outer buffer. The choice

of alternate locations could lead to shorter (e.g. 3) or longer

distances (e.g. 2), between a pair of individuals
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The random effects component allowed us to (1)

partition the variance resulting from genetic stochas-

ticity versus landscape and individual configuration

and (2) account for nuisance effects of using the same

parameters to create multiple simulations. We had 10

genetic simulations for each landscape and set of

individuals. Using landscape as a random effect

allowed us to estimate the variation in correlations

within a landscape due to genetic stochasticity. We

had 5 replicates of the 9-factor combination of habitat

amount and aggregation. Within a replicate, land-

scapes had similar configurations (Fig. 1), which we

needed to account for to avoid pseudo-replication. To

do so, we tested whether replicate was an important

random effect. In addition to accounting for group

correlations and allowing us to partition variance,

random effects appropriately represent the landscapes

and genetics we simulated, as a sample from a nearly

infinite total we could have sampled.

The variance covariate component removed the

assumption of homogeneity of variance and allowed us

to model the influence of spatial uncertainty and

landscape characteristics on the variability of our corre-

lations. The fixed effects component models the strength

of the influence of our spatial uncertainty and landscape

characteristics on our dependent variable (correlations),

in the same fashion as a typical linear regression.

Before we began modeling, we tested for linear

correlations among explanatory variables, and elimi-

nated highly correlated variables (r [ 0.9) to avoid

problems with collinearity. As the first step in finding

the best model, we tested whether to include random

effects for replicate or landscape in our model. We

held the fixed effects component constant (most

complex model) and compared models with (1) no

random effects, (2) replicate-only random effects, (3)

landscape-only random effects, and (4) landscape-

nested-within-replicate random effects. We kept the

random effect component from the model with the

lowest akaike information criteria (AIC; Akaike

1973). AIC has two components: a term that assesses

lack of fit and a penalty term for each additional

parameter. The lowest score thus represents the most

parsimonious model for the data, and minimizes both

bias from underfitting and variance from overfitting

(Burnham and Anderson 2002; Anderson et al. 2000).

Next, for the variance component, we modeled

residual variance as a function of covariates. Holding

the other two components constant (best random

effects component and the most complex model for

fixed effects), we found the best variance covariate

component in two steps. First, we included one

covariate in the variance component of the model

and examined whether a multiplicative, exponential,

power, or constant plus power relationship best

described the form of variance with that covariate

(Zuur et al. 2009). Then we compared all combina-

tions (no variables to all variables) of the best model

for each variance covariate. We kept the variance

covariates from the model with the lowest AIC.

Finally, with the best random effect and variance

covariate components included, we used backwards

stepwise regression to identify the best fixed effect

component of our model. Our most complex model

included a quadratic term for cohesion, a two-way

interaction term for spatial uncertainty 9 percent habitat,

and a three-way interaction term for percent habitat 9

aggregation 9 cohesion, plus all main effect and two-

way interactions within the three-way interaction (Sup-

plement I). We examined standardized residuals to assess

whether we adequately modeled heterogeneity of vari-

ance and histograms to assess normality of residuals.

We also calculated the proportion of significant

partial Mantel’s r for correlations of Genetic*Ecolog-

ical | Euclidean distances across levels of spatial uncer-

tainty and percent habitat. All analyses were conducted

in R (R Development Core Team 2010), using the

packages ecodist for Mantel tests (Goslee and Urban

2007) and nlme for GLMMs (Pinheiro et al. 2011).

Results

Preliminary data exploration

Linear correlations among potential covariates ranged

from r = 0 to r = |0.56|, except for the correlation

between aggregation and clumpy (r = 0.94). Since

clumpy is a landscape metric designed to closely

approximate theoretical aggregation values, and

aggregation was specifically set to simulate land-

scapes, we retained aggregation and removed clumpy

from further analysis.

Model 1: True*Alternate ecological distances

Mantel’s r correlations between the true and alternate

location ecological distances were all very high, with a
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median of r = 0.97. Correlations always decreased

with increasing spatial uncertainty, as expected.

Spatial uncertainty, percent habitat, aggregation, and

cohesion all significantly contributed to changes in the

correlation between true and alternate location eco-

logical distances (Table 1). Percent habitat and spatial

uncertainty interacted. At low percent habitat (15%),

predicted correlations changed only by 0.04, but the

effect of spatial uncertainty increased at higher percent

habitat (55%) to 0.125 (Fig. 3a). Highest correlations

occurred with low percent habitat, high aggregation,

and intermediate cohesion, which all interacted with

each other. Breaking down the three-way interaction,

as percent habitat increases, the change in correlation

across cohesion becomes greater with increasing

aggregation (Fig. 4a–c). At low habitat, cohesion has

very little effect on Mantel’s r across all levels of

aggregation, but as habitat increases, cohesion and

aggregation interact more, and the effect size of

cohesion and aggregation increases as well. At

maximum, effect size (change in predicted correla-

tions) of these three variables was 0.129 (Fig. 4c).

Thus, changes in spatial uncertainty or landscape

characteristics could lead to similar decreases in

correlations among true and alternate ecological

distances.

The best model to explain the correlation between

ecological distances based on true and alternate spatial

locations included replicate random effects (Table 1),

indicating that correlations between ecological dis-

tances based on true and alternate spatial locations for

landscapes within a replicate were correlated with

each other. The best variance structure included

spatial uncertainty, percent habitat, and aggregation

(Fig. 5). The variance of Mantel’s r increased with

power functions for spatial uncertainty and percent

habitat, and exponentially for aggregation. Variance

of correlations increased the most with percent habitat

Table 1 Model coefficients from the best models explaining

Mantel’s r or partial Mantel’s r. We had 225 Mantel’s

r correlations (45 landscapes 9 5 alternate locations) for the

model of True*Alternate ecological distances. After excluding

3 landscapes because the simulations did not meet objectives,

we had 2,520 correlations (42 landscapes 9 6 locations 9 10

genetic simulations) for the models of Genetic*Ecological and

Genetic*Ecological | Euclidean distances

Fixed Effects True*Alternate Genetic*Ecological Genetic*Ecological | Euclidean

Estimate (SE) Estimate (SE) Estimate (SE)

Spatial uncertainty 0.088 (0.021) -0.052 (0.021) 0.062 (0.034)

Percent habitat -0.065 (0.026) -0.017 (0.002) -0.009 (0.002)

Spatial uncertainty 9 Percent habitat -0.013 (0.001) -0.002 (0.001) -0.003 (0.001)

Aggregation -0.040 (0.012) 0.005 (0.001) 0.485 (0.227)

Cohesion -0.006 (0.004) 21.2305 (9.891) 0.027 (0.103)

Cohesion^2 -0.108 (0.050)

Aggregation 9 Cohesion 0.004 (0.001) -0.005 (0.002)

Percent habitat 9 Aggregation 0.003 (0.001)

Percent habitat 9 Cohesion 0.001 (\0.001)

Percent habitat 9 Aggregation 9 Cohesion -0.00003 (\0.001)

Initial percent variancea

Replicate 8.2 16.2

Landscape 91.8 92.9 73.9

Genetic 7.1 9.9

Final percent varianceb

Replicate 22 – 19.9

Landscape 78 100 80.1

Genetic 0 0

a Variances represent ‘raw’ variances, before variance covariates explaining the residual variation among genetic simulations are

added to the model
b Variances represent final variances, after variance covariates explaining the residual variation among genetic simulations are added

to the model

Landscape Ecol (2012) 27:253–266 259

123

Author's personal copy



(weights ranged from 0.01 to 0.17), but only slightly

with aggregation (weights ranged from 0.0004 to

0.00007) and spatial uncertainty (weights ranged from

1.9 9 10-9 to 1.9 9 10-7).

Model 2: Genetic*Ecological distance

Spatial uncertainty, percent habitat, aggregation, and

cohesion all significantly influenced changes in the

correlation between genetic and ecological distances

(Table 1). Spatial uncertainty and percent habitat both

have negative relationships with correlations between

genetic and landscape distance. Spatial uncertainty

and percent habitat interact, but the influence of

percent habitat is much larger than the influence of

spatial uncertainty (Fig. 3b). Correlations decrease

more quickly at higher levels of percent habitat and

higher spatial uncertainty. Mantel’s r increases

slightly with aggregation of habitat (Fig. 4d).

Cohesion has a quadratic relationship with correla-

tions between genetic and landscape distance

(Fig. 4e). Correlations of genetic and ecological

distances increase slightly up to cohesion *98 and

then sharply decrease. The highest Mantel’s r again

occurred with low percent habitat, high aggregation,

and intermediate cohesion.

The model with landscape-only random effects was

best supported (Table 1). Genetic stochasticity

accounted for only 7.1% of the variation remaining

after inclusion of spatial uncertainty and landscape

characteristics as fixed effects. Furthermore, after

modeling the genetic stochasticity as a function of

variance covariates, less than 1% of the variation was

due to genetic stochasticity alone (Table 1). The best

variance covariate model included an interaction

between percent habitat and aggregation. Genetic

stochasticity increased across aggregation, slightly at

15% habitat and strongly at 55% habitat (Fig. 5b, c).

Fig. 3 Predicted influence of spatial uncertainty across percent habitat for a True*Alternate landscape distances,

b Genetic*Landscape distances, and c Genetic*Landscape | Euclidean distances
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The largest variance weights are 0.0043. Standardized

residuals from the final model are homogeneous and

normal.

Model 3: Genetic*Ecological | Euclidean

distances

As with the other response variables, spatial uncer-

tainty and our three landscape characteristic covariates

all influenced the strength of correlations between

genetic and ecological distances, even with the effect

of Euclidean distance partialled out. Percent habitat

and spatial uncertainty interact, as they did for our

other response variables. Partial Mantel’s r correla-

tions always decrease with increases in percent habitat

but decrease more quickly with higher spatial uncer-

tainty (Fig. 3c). Overall the influence of spatial

uncertainty on strength of genetic structure is very

small with maximum differences in partial Mantel’s

r of less than 0.04. Percent habitat has a relatively

large effect size, with predicted partial Mantel’s

r ranging from 0.40 with 55% habitat to 0.77 with

15% habitat (Fig. 3c). Aggregation and cohesion also

interact (Fig. 4f). Mantel’s r increases with aggrega-

tion and decreases with cohesion, but decreases more

quickly at higher aggregation. At aggregation of 60,

partial Mantel’s r ranged from 0.95 at our minimum

(97.13) to 0.22 at our maximum (99.87) level of

cohesion, indicating that cohesion can have a strong

influence on the strength of genetic inferences.

Aggregation has a slightly lower effect size, even

with cohesion of 98.2 (highest effect size of aggrega-

tion). Partial Mantel’s r ranged from 0.36 at our

minimum (30) to 0.97 at our maximum (90) aggrega-

tion. Highest partial Mantel’s r occurred with low

percent habitat, high aggregation, and low cohesion, as

they did for our other response variables. Standardized

residuals from the final model are homogeneous and

normal.

Inclusion of both replicate and landscape as random

effects was supported. Prior to the addition of variance

covariates and given the inclusion of fixed effects

Fig. 4 Predicted influence of aggregation and cohesion. a–

c Aggregation across cohesion for True*Alternate landscape

distances (by habitat), d Linear influence of aggregation for

Genetic*Ecological distances, e Quadratic influence of cohe-

sion for Genetic*Ecological distances, and f Aggregation

across cohesion for Genetic*Ecological | Euclidean distances
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covariates, genetic stochasticity accounted for 9.9% of

the variation (Table 1). After adding variance covar-

iates, variation among genetic simulations accounted

for \1% of the variation, and most ([80%) of the

remaining unexplained variation was among

landscapes.

Variance decreased slightly with spatial uncertainty

and percent habitat and increased slightly with aggre-

gation and cohesion (Fig. 5). All variance weights

were B0.000008, a very low effect size.

Significance tests for partial Mantel’s r:

Genetic*Ecological | Euclidean distances

As with the strength of Mantel’s r correlations, the

proportion of significant correlations had an inverse

relationship with percent habitat. Across spatial

uncertainty, the proportion of significant partial Man-

tel’s r correlations varied little (Table 2).

Discussion

Although many studies now incorporate landscape

genetics into conservation planning, researchers have

simply used the available samples without knowing

the degree to which spatial uncertainty, landscape

configuration, and genetic stochasticity affect the

strength of genetic inferences. Because simulations

provide multiple realizations of the stochastic genetic

process, simulation modeling provides a platform to

observe a greater variety of situations than is possible

in empirical studies and allows explicit control over

pattern-process relationships (Epperson et al. 2010).

This allows researchers to investigate hypotheses

about varying organism characteristics, population

size, dispersal ability, the influence of spatial factors,

and their interactions that are difficult to investigate

directly in the field (Wasserman et al. 2011). The use

of simulations allowed us to explore the effects of

Fig. 5 Log of variance weights for Spatial uncertainty, Percent

habitat, Aggregation, and Cohesion covariates. Solid lines represent

variance covariate weights for the True*Alternate response

variable. Intermediate dashed lines are Genetic*Landscape

distances. Short dashed lines are Genetic*Landscape | Euclidean

distances. Weights for True*Alternate are generally largest,

because they represent variation at the landscape level, while

weights for Genetic*Landscape|Distance represent only variation

at the level of the genetic simulation
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landscape configuration and spatial uncertainty while

holding other factors constant. We were also able to

assess genetic stochasticity directly using simulated

data. While our simulations represent rather simplified

landscapes, did not evaluate demographic stochastic-

ity, and included several assumptions about the

dispersal and mating processes, our results provide

some initial insights into the influence of sampling an

individual at only a single location and the influence of

landscape on landscape genetic inferences. Our results

should also apply when obtaining samples of plants or

sedentary animals that have location errors. Generally,

our results provide reassurance to landscape genetics

researchers with studies that have (1) only sampled an

individual at one location within a home-range of

unknown size and (2) the variable of interest can be

simplified to habitat versus non-habitat.

Interplay of spatial uncertainty, landscape

characteristics, and genetic stochasticity

As expected, increasing spatial uncertainty decreased

Mantel’s r correlations between true and alternate

ecological distances. However, spatial uncertainty had

only a very small effect on the strength of genetic

structure (changes in r \ 0.05) measured with Man-

tel’s and partial Mantel’s r for genetic and ecological

distances, at least with the resistance value fixed at 20.

Variance of Mantel’s r correlations between true and

alternate distances increased with spatial uncertainty,

as expected, however, the variance of correlations

between genetic and ecological distances was negli-

gible, though significant, at this resistance value.

Percent habitat consistently had a relatively large

effect size. Aggregation and cohesion also had sub-

stantial effect sizes, which interacted, making simple

interpretations difficult. At high levels of cohesion,

equivalent to a highly connected landscape, which only

occurred under high aggregation, only large fragments

of habitat existed, our populations approached pan-

mixia, and little genetic structure existed. At low

cohesion, equivalent to a less connected landscape,

changes in aggregation (60) led to large changes in

partial Mantel’s r. At low levels of cohesion, increases in

aggregation led to fewer ‘stepping stones’ for gene flow,

and thus greater genetic structure. Because percent

aggregation and cohesion interact, ranking effect size of

these variables is only meaningful given a constant

value of the other variable.

Caveats and further research

Our ability to detect interaction effects of landscape

composition and configuration, as measured by

percent habitat, aggregation, and cohesion decreased

after the addition of genetic simulations (our

Genetic*Ecological models), likely because land-

scape characteristics influenced not only ecological

distances (Model 1), but also genetic distances (Mod-

els 2, 3). Greater genetic stochasticity existed in some

landscapes than others, which we modeled using

variance covariates (reducing residual variation in the

genetic component to almost 0). Because our fixed

effect covariates did not fully explain the variation

from different landscape configurations, we believe

that investigation of additional landscape covariates

may provide additional insight. Our findings provide

insight to conservation practitioners who are using

estimates of resistances determined through causal

modeling (Cushman et al. 2006; Shirk et al. 2010;

Wasserman et al. 2010). Although we have not found a

method to calculate uncertainty for resistances deter-

mined through causal modeling, knowing that uncer-

tainty depends on the landscape characteristics can

give insight into conservation planning efforts using

resulting resistance estimates. For example, Short Bull

et al. (2011) found that detectability of the influences

of roads, elevation, and forest cover on genetic

differentiation in American black bear was dependent

on whether these features were structured in such a

way as to limit movement and gene flow in the

particular landscape.

Three situations exist in which spatial uncertainty

could have a greater influence on genetic structure

inferences than we found based on our simulations.

First, higher landscape resistances could lead to

greater variation in the strength of genetic structure.

In a brief survey of published studies from natural

Table 2 Percentage of significant genetic relationships from

partial Mantel’s r for Genetic*Landscape | Euclidean distances

Percent habitat Spatial uncertainty

0 0.1 0.15 0.2 0.25 0.3

15 0.94 0.95 0.94 0.95 0.93 0.94

35 0.99 0.99 0.99 0.99 0.99 0.97

55 0.71 0.73 0.73 0.71 0.71 0.70
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systems, optimized resistance values ranged from 1 to

10,000 (Epps et al. 2005; Cushman et al. 2006; Epps

et al. 2007; Shirk et al. 2010; see Spear et al. 2010 for a

list of these kinds of studies), considerably higher than

the resistance (20) we tested. More work is necessary

to identify whether genetic inferences are robust to

random spatial uncertainty with larger resistance

values or multiple habitat types, with varying or high

resistance values (Rayfield et al. 2010). Second, if

spatial errors are biased, such that a large number of

spatial errors are inside a habitat with high resistance

or across a barrier with very high resistance, the

resistance of that habitat or barrier could be underes-

timated. This could be a problem when GPS or human

error misidentifies locations in a biased way, such as

might occur in heavily forested areas. A description of

the type of habitat and direction relative to barriers

could be used to check and reduce this type of error.

Biased errors could also occur for plants if they are

long-lived and the habitat becomes more resistant to

gene flow around them. For example if a species that

requires light to regenerate becomes overgrown by

trees, this time lag could lead to an underestimate of

the resistance of the forest. These effects should only

change inferences when the same kind and direction of

errors contaminate a high proportion of samples.

Third, by using least-cost paths as our landscape

distance metric, we assume that the individual knows

the landscape and disperses ideally along a single best

(least-cost) path. We do not know whether our results

would hold with individuals that have less knowledge

of the landscape and disperse via a random walk or

partial random walk, which can be approximated with

circuit theory (McRae 2006) or least-cost corridors

(Pinto and Keitt 2009). Most studies in landscape

genetics have relied on the use of Mantel and partial

Mantel testing (Storfer et al. 2010). Future work

should explore whether other distance-based methods,

such as distance-based redundancy analysis (see

Legendre and Fortin 2010), are more sensitive to the

influence of spatial uncertainty. More work is needed

to understand the influence of our assumptions (i.e.,

simplified landscapes, no demographic stochasticity,

and small set of mating and dispersal parameters) on

landscape genetic results.

Few researchers have explored how variation in the

pattern of landscape mosaics affects genetic differen-

tiation. Bruggeman et al. (2010) used simulation

modeling to quantify the influence of patch size and

patch isolation on abundance, effective population

size, and Fst in red-cockaded woodpecker. Their work

is one of the first to provide an explicit link between

population genetic processes, habitat area, and critical

thresholds of fragmentation affecting those processes.

Their results suggest that population genetic structure

is more strongly affected by habitat fragmentation

than habitat patch size.

Cushman et al. (in press) quantified the relative

importance of habitat area and configuration on

genetic differentiation across broad gradients of the

extent and fragmentation of habitat. They used

spatially explicit, individual-based simulation model-

ing to quantify the effects of habitat area, fragmenta-

tion, and the contrast in resistance between habitat and

non-habitat on the apparent strength and statistical

detectability of landscape genetic relationships. They

found that cohesion had the strongest ability to predict

the magnitude of genetic differentiation, which is

consistent with our findings that cohesion has a very

large effect on genetic differentiation, although we

found that the effect size is mediated by the level of

aggregation. Cushman et al. (in press) also found that

when habitat area is very high or habitat fragmentation

is very low landscape structure does not limit gene

flow, and landscape genetic effects are often not

detectable. This is also consistent with our findings

that lowest genetic differentiation occurred with high

percent habitat, low aggregation, and high cohesion.

Our work builds on Cushman et al. (in press) by

examining the influence of spatial uncertainty, using a

higher level of resistance (20 vs. 1–16), testing the

theoretical value of aggregation (H) rather than

aggregation index or clumpy, and our focus on the

strength of genetic inferences rather than detection of

landscape influences on genetic differentiation. Our

results indicate that at least in landscapes with

relatively low resistance and randomly distributed

spatial error, the spatial uncertainty has little influence

on inferences of genetic structure. Percent habitat,

cohesion, and aggregation can all drive the strength of

the correlations of genetic and landscape distances,

although this relationship is relatively complex (Fortin

et al. 2003; Neel et al. 2004; Bruggeman et al. 2010;

Cushman et al. in press). The highest correlations

consistently occurred with low percent habitat, high

aggregation, and low-intermediate cohesion. This is

consistent with expectations that genetic structure will

be lower and thus more difficult to detect in landscapes
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with relatively intact habitat. Most of the unexplained

variation remained at the landscape level, so further

investigation into other landscape metrics may prove

fruitful.
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